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ON THE PROBLEM OF OPTIMAL SIGNAL
DETECTION IN DISCRETE-TIME,

CORRELATED, NON-GAUSSIAN NOISE

INTRODUCTION

Optimal signal detection in an environment of non-Gaussian noise is an important and difficult
problem, and solutions to it have been obtained only under limited conditions. The need to identify
optimal detection structures is motivated theoretically by the observation that a failure to recognize
noise as non-Gaussian can lead to significant detection performance degradation in cases such as radar
signal detection scenarios.

Because of the need to identify optimal detection structures, most researchers in this area have
proceeded in one of two ways. One approach has been to assume that the samples that make up the
observed data vector are independent and identically distributed according to a given non-Gaussian
probability density function (pdf) [1-13]. Since the problem of specifying the optimal signal detection
structure requires knowledge of the multivariate pdf of the noise vector, this problem may be, at least
theoretically, solved in its entirety, since the knowledge of the univariate pdf (i.e., the marginal pdf)
is sufficient to fully determine the required multivariate pdf for independent samples.

A second approach has been to obtain the asymptotically optimal detection structure [14-25] for
a given noise background. Although this problem is not limited to the assumption of independence,
the resulting detection structures often require a large number of samples to achieve acceptable detec-
tion performance. The asymptotically optimal detection structure may achieve good performance in
the small sample case (this result holds in the Gaussian case, for instance), but this issue is not easily
addressed. In addition to these two prevalent approaches, a limited number of results have been
obtained for the more general case of finite sample detection of signals in non-Gaussian noise with
constraints imposed on the covariance structure of the noise process [26-28].

Recently, results have been obtained for the more general problem of detecting signals in non-
Gaussian noise with a general covariance structure [29-31]. Those results were obtained by assuming
that the univariate pdf and the covariance structure of the noise were known. A multivariate pdf with
marginal pdfs equal to a given univariate pdf and with the assumed covariance structure was con-
structed, and the detection structure was determined by applying the Neyman-Pearson criterion to the
resulting likelihood ratio. The approach seems reasonable, but it is not without some arbitrariness.
Although the Gaussian random process is completely specified by its mean and covariance function, a
non-Gaussian process is usually not completely specified by such information. One may then ask if
knowledge of the univariate statistics and the covariance function of a non-Gaussian process is suffi-
cient (or even reasonable) for solving the problem of optimum signal detection in this non-Gaussian
noise.

To examine this issue, we present two general models (both previously described in the litera-
ture) for non-Gaussian noise and show that they may be used to construct two different non-Gaussian
multivariate pdfs that have the same marginal pdf and the same covariance structure. We restrict our
attention to the more general problem of detection in the presence of narrowband noise, although the
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application of our results to the case of strictly real random variables is straightforward. We show
that, in general, these two models lead to different optimal detection structures. We also present an
example, applicable to the radar case, which shows that the detection performance differs significantly
for the two models, even though they are equivalent in the major attributes we have indicated.

NON-GAUSSIAN, CORRELATED NOISE MODELS

In this section of the report, we present two narrowband non-Gaussian, correlated noise models.
These models are constructed based on an assumed knowledge of a univariate amplitude pdf and a
covariance structure. More specifically, let xi be a complex noise sample

xi = lxi l cos Oi + j Ixi I sin Oi i = 1, . . ., m. (1)

We a sume that the pdf of I xi l, h ( xi I ), is known, and that the phase Oi is independent of I xi

and is uniformly distributed between 0 and 2ir. This assumption leads to

h(Jx~i )
fXi = 2 lx i = 1,M...,m, (2)

where fx is the complex univariate pdf of xi.

Note that the xi are identically distributed. We assume also that a covariance matrix Rx is known,
where

Rx = [E(xixy)], i, j = 1,. m (3)

and the bar indicates complex conjugate.

Transformation Noise Process

The first model is the so-called transformation noise model described for real variables in Ref.
24, and applied to the narrowband-signal case in Refs. 29 through 31. For the narrowband-signal
case, the model may be formulated as follows.

Specify a one-to-one invertible, nonlinear transformation

i = g( Ixi ) i = 1,..., m (4a)

Ix I = g 1 y I) i = 1, ... , m (4b)

such that I yi I is a Rayleigh random variable, and I xi I is a random variable distributed according to

h ( xi) as specified above. In general, this nonlinear mapping is given by

[yi I = g(Jxi 1) = V-2 2 ln [1 - H( xI x)]i i = 1, ... , m (5)

2
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where

2 is the Rayleigh parameter (same for all i),

H( ) is the Cumulative distribution function associated with the pdf h ( ).

This mapping is then applied to the samples xi, yi as

i = V(Xi)= gxi ) Xi = 1, m (6a)
lxi FI

xi = U(Yi) - l I y i i = 1, .. ,m (6b)

where

Yi = [l I ... ym]T is the vector of complex samples with a zero mean multivariate Gaussian pdf

xi = [x1 ... Xm]T is the vector of complex samples with a non-Gaussian multivariate pdf

T stands for transpose.

Note that the mapping indicated in Eqs. (5), (6a), and (6b) transforms only the amplitude of the com-
plex sample while leaving the phase unchanged. As a result, the vector x is a complex vector with
complex marginal pdfs given by Eq. (2). The multivariate pdf of x may be obtained by the straight-
forward application of the theory of transformation of random variables and is given by

f.(2) W I exp |-2 V(x)'Ry-'V(x)}, (7)
(2ir) m lRYI 2

where

X = [X1 ... Xm]T,

V(x) = [V(x 1) ... V(Xm)]T,

RY is the covariance matrix of underlying complex Gaussian random vector y,

J is the Jacobian matrix associated with the transformation

is the matrix determinant, and

t is the complex conjugate transpose.

3
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As shown in Ref. 29, the term I J I is in general equal to

g(x I ) dg(lxi I)
n11 d xi (8a)

which in this case may easily be shown to be equal to

in h (I xi 1 )aY2

l] I xI (I -i HIx I)) 8b

To complete the discussion of the model, we must examine the relationship between Ry, the
covariance matrix of y and Rx, the covariance matrix of x, which we have assumed is known. At
this point, it suffices to say that since the nonlinear transformation given by Eqs. (5), (6a), and (6b) is
a one-to-one mapping, the relationship between RY and Rx is unique. We may therefore construct any
Rx, by the appropriate choice of Ry. Further discussion of this point is deferred to the presentation of
an example.

To summarize, a complex non-Gaussian multivariate pdf,

fx(X) = (2Ir)m |R.I ( I[ lx ' | I)) ] exp f-2V(x)tRy-IV(x)1,

may be constructed with a specified marginal pdf

27r I xi I)

and a specified covariance matrix Rx that is uniquely determined by the choice of RY

Spherically Invariant Random Noise Process

A second non-Gaussian, correlated noise model may be formulated based on the class of spheri-
cally invariant random processes described in Refs. 32 through 35 and applied to the radar sea clutter
modeling problem in Ref. 36. For the narrowband signal case, the model may be applied as follows.

On any given observation, the observed noise vector is a vector sample from a Gaussian distri-
bution with a known normalized correlation matrix but with an unknown variance that is the same for
all the samples within the observed vector. The unknown variance is then assumed to be a random
variable. Conditioned on this variance, ax2 , the multivariate pdf of x, is

f 1 2(X | 2 = (27r)m I A I (a 2)m e [ 2 ll(9)

4
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where

x = [xl . . . xm]T is the vector of complex samples with a conditional Gaussian multivariate pdf,

A is the normalized correlation matrix of x,

aX2 is the variance (i.e., power level) of x given observation

and is a random variable that fluctuates from one observation to the next.

The complex multivariate pdf of x is then given by

1 10 II
fx(x) s 2 exp | 2 A lx (aX2 (,X2) (10)

(27r)01 I A (OX 2) 2r,

where

p (ax2) is the pdf of the random variable ax2.

To ensure that fx (x) has the assumed marginal pdf given by Eq. (2), it is sufficient to choose p (x 2)

as the solution to the following integral equation:

h'1x h (0 exp IX 1 Ox2 O )
hIll 1 I = J0 2u22rx2 )d(U2), (11)

or equivalently to show that the random variable I xi l (whose statistics we have assumed are known)

has the following decomposition:

Ixi l = uxRi i = 1, .. . , m, (12)

where

Ri= the Rayleigh random variable with parameter = 1

Fax = N/u

The covariance matrix of x, Rx, may be shown in a straightforward manner to be given by

Rx = /io 2A, (13)

5
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where

P, 02 = E[a,2 ]

and is the mean value of ax2.

To summarize, a complex non-Gaussian multivariate pdf,

f (X) = X I X( 1X(2ir) m I A I ° (aX2)m x
- 1 2xtA-'xt (ax2)d(ax2)\
1 ~ 2 aox 2 J ' x x '

may be constructed with a specified marginal pdf

f~i(xi = h(Jxi 1)
h2gr I xi I i = 1, ... , m

and a specified covariance matrix Rx that is uniquely determined by the choice of A.

At this point, we have presented two different multivariate non-Gaussian pdfs, each with the
same marginal pdf and the same specified covariance matrix. The question is if these two different
noise models that are equivalent in major attributes, i.e., marginal pdf and covariance matrix, lead to
similar detection structures. This question is tantamount to asking if the specification of the marginal
pdfs and of the covariance structure of a noise process is sufficient to solve the signal detection prob-
lem in non-Gaussian noise.

OPTIMAL DETECTION STRUCTURES

The detection problem of interest is a binary hypothesis test

HO: x = n

HI:x = s + n,

where

n is the non-Gaussian noise vector,

s is the known signal vector.

The optimality criterion applied here is the Neyman-Pearson criterion. The optimal detection struc-
ture is therefore given by a likelihood ratio test

HI
(x) = fx (x HI) > T.

x fx (x IHo) <
Ho

6
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where

fx (x I H1) is the pdf of the observed vector x under HI

fx (x I HO) is the pdf of the observed vector x under Ho

T is the threshold chosen as a function of Pf0.

For the transformation noise model we have

XT(x) rLl Ai exp {--YV(x - s)'Ry V(x - s) -V(x)'RyR V(x)1 < T, (15)
Li=1 ] 2 Ho

where

h lxi -si I )ay2

Ai = xi - si I [1 H(x 1 - si i)]
h ( I xi | )ay2

lxi [1 - H( Ixi )

If RY ary21 then after some algebra we have

n lxi -silh(|Xi -Si I

XTN(x) = h(i xI) (16)

Ixi I

which is equivalent to

X ( ) rIfXi Si (xi Si) (7
XTN(X) = l (17)

i=, fx1(Xi)

i.e., the independent sample detector. Thus, when RY = ay2 we also have Rx Uax21.

For the spherically invariant noise model, we have

0(X 2) ep 2 (x- -)A'(x - s)J )d

Xs!(x)= ; it 1 2d(a) 2 (18)

i0 (0r2 ~)m exp ry- 2X'-Xpa2da2

7
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We note immediately that the choice Rx = ye 21 does not cause Eq. (18) to reduce to a form that is

equivalent to Eq. (17). From this observation, we deduce that the two noise models, although
equivalent in the major attributes discussed above, are fundamentally different in at least one respect.
When the correlation between samples is zero, one model yields independent samples, whereas the
other model does not.

However, this observation does not necessarily indicate that the two models may not be con-
sidered equivalent within some detection performance criterion. To examine this issue, we must
further examine the detection structures. From our assumption that s is a completely known signal
vector, the detection structure for the transformation noise model (Eq. (15)) is based on a binary
hypothesis test comprised of simple hypotheses. The detection structure for the spherically invariant
noise model, on the other hand, is seen from Eq. (18) to be a Bayesian implementation of a test
comprised of composite hypotheses. The implication is that the test implemented in Eq. (15) is a
most powerful test for the signal vector s, whereas the test implemented in Eq. (18) is not necessarily
a most powerful test. In fact, since the most powerful test for the spherically invariant noise model is
the matched filter test for Gaussian noise when the power level, ax2 , is known on each detection deci-
sion, no test is uniformly (i.e., uniform over all possible values of ax2 ) most powerful for testing for
s. From these observations, we conclude that the optimal detection structures for the two noise
models are significantly different.

To answer the question about the adequacy of the a priori knowledge that we have assumed
(i.e., the univariate pdf and the covariance function) for formulating a signal detector, we must exam-
ine the performance of the detector that results from a particular noise model against the data from
the other model Since the aim of these studies is to build a practical signal detector, we present two
suboptimal but practical detectors and use them for the performance comparison.

SUBOPTIMAL DETECTION STRUCTURES

Since the rationale for deriving these suboptimal detectors from the optimal detectors is given
elsewhere (in Ref. 29 for the transformation noise model, and in Ref. 37 for the spherically invariant
noise model), these detectors will be presented here but not derived.

For the transformation noise model, the test is given by

HI

V(s^)'R, - V(x) > T. (19)

Ho

where

& is the steering vector obtained from

s = adog,

a is the amplitude

0 is the phase.

8
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For the spherically invariant noise model, the test is comprised of two parts and is given by

If I VA'xI > Ta.
g'A-'g~

(20a)

is true, then a signal detection is declared. If it is not true, then

(2) In

01 (0_~1

°0 (a2) ex
xtA-lx - I tA- 1x 2

At-1<A
0 (ax 2 )d (ax 2)

H1

< T

Ho

(20b)

is evaluated.

Note that both tests are independent of the signal amplitude a and the signal initial phase 0,
which often are unknown. The assumption of knowledge about &, which represents a pulse-to-pulse
phase shift, is justified, since a bank of such detectors, each matched to a different s, may be imple-
mented.

EXAMPLE

The Weibull pdf is of significant interest in the radar detection problem, since certain types of
radar clutter have been shown to have amplitude statistics that are described by it. In terms of our
earlier notation, we may write

h(Jxi |) = a I 2Xi Ia 1 exp {- n 2 IX la} i = 1, .. , m, (21)

where

a is the skewness parameter

b is the median value of I xi I.

The range 0.5 c a < 2.0 is the usual range of interest in the radar case [38]. Note that the value
a = 2.0 yields a Rayleigh distribution. By applying the results given above, the complex bivariate
pdf is given in the transformation noise model by

(2ir) 2
I RI I

f- IV(x)'Rx-1V(x) ,
L2J

9
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where

V(x) = [V(x0) V(x2)]T,

2ln 
V(x1 ) = Ix2 In2 b xi I 2

i = 1, 2.

We further let RY=

leads to

and b = 1. Cantrell [29] and Farina [30] have shown that this choice

Rx=o2[p PXj (23a)

where

(23b)a2 ;= a 
a (ln2)2/a

Px = ( py )
2 (-

* 1 3
2- +1I I 

I 0 3 1 + 91 2+ 2-;- a 2i-; 2; pyJ

F( ) is the gamma function and

F( ; ; ; ) is the Gauss hypergeometric function.

To show that the Weibull amplitude pdf may fit into the framework of the spherically invariant
noise model, we must show that the Weibull pdf satisfies the integral equation given in Eq. (11) or
the decomposition given by Eq. (12). These properties are shown in Appendix A for skewness
parameter a = 2, 1 and 1/2, whereas Kim [39] has given an approximate solution to the integral
equation in Eq. (11) that is accurate for the range I c a < 2. As shown in Appendix B, the com-
plex bivariate pdf for this case is given by

exp - In 2 (xtA- Ix )a /2
_ Lain2]1 2

(27r) 2 I A I (xtA- IX)2 -a
h I1 + (2-a)

a In 2 (x t A- Ix)a 1
/2

b a

(24)

10

where

(23c)
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In the example above, we choose

[1 Px1
A L [x = j (25a)

r[!]
Pa 2= 0 2 = 2 (25b)

a (In 2) a

Note that we do not actually choose At,2 at will, for it is determined by p (ax 2) However, since the

Weibull pdf may fit as a spherically invariant noise model and

AtLU2 = a2 = 2 [xixi

by definition, Eq. (25b) is always true.

In the radar problem, it seems more intuitive to call the spherically invariant noise process a
spatial noise process, since the variation in ax2 is thought to be induced by a spatial variation in the
radar backscatter process [40]. Thus, from now on, the spherically invariant random noise will be
referred to as spatial noise.

To proceed we assume that

& = [1 + jO 0 + j 1]T

and evaluate each of the two suboptimal noise detectors given above against each of the two noise
models. Table 1 shows the covariance information about the noise used in the examples:

Table 1 - Covariance
Function for Example

a Px

0.5 51.985 0.958
1.0 2.081 0.975
1.5 0.970 0.979
2.0 0.721 0.98

For the transformation noise model, py = 0.98 was used for all values of a (this "ahle of py gen-
erates the values of px given in the table).

Since the computation of the detection performance did not prove to be tractable in closed form,
the performance was evaluated by Monte Carlo simulation. To accomplish this evaluation, the detec-
tor was first applied against data consisting of noise samples only, and the detection threshold that
yielded a desired probability of false alarm was determined through the use of the importance sam-
pling technique [41,42]. This threshold was then used in conjunction with the detector operated

11
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against data consisting of noise samples plus signal samples with amplitude a, random initial phase A,
and steering vector s. The performance results obtained are presented in Figs. 1 through 4, where

__ = 10 log (26)
C

The figures indicate the general trend that the transformation noise detector, when operated
against the transformation noise model, yields uniformly the best detection performance. The perfor-
mance in this particular case is significantly better than the performance in other cases at the spikiest
clutter condition examined (the clutter is said to get spikier as a - 0). On the other hand, the trend is
that at the spikier clutter conditions, the transformation noise detector operated against the spatial
noise model yields the worst performance of the scenarios tested. Since we have made the two
models equivalent in the attributes that we have assumed are known, we may conclude that our earlier
observations about the difference in the detection structures is supported by the example we have
evaluated. It seems that knowledge of the univariate pdf and the covariance function of the non-
Gaussian noise process is not sufficient for the solution of the signal detection problem.
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40

To give a further point of reference for the detection performance against the spikiest clutter,
Fig. 4 is reproduced in Fig. 5 with the performance of the matched filter detector, I &VA - 1x l, against
the two models added for comparison. This comparison indicates that in the absence of any addi-
tional a priori knowledge other than that which we have assumed, the matched filter detector is safer
than the transformation noise detector if we seek to minimize the maximum risk that we take in
implementing a detector. The spatial noise detector yields better performance than that of matched
filter detector, but the increase in performance may not be sufficient to warrant the added complexity
of implementing the spatial noise detector. A designer constrained by the complexity of implementa-
tion, unless the added complexity yields a significant payoff, may implement the matched filter rather
than either of the two detectors presented here. Clearly, then, further research in this area should
focus on determining what a priori information is sufficient to allow for an adequate formulation of
the detection problem that realizes the potential gain in the detection performance that a non-Gaussian
noise model offers relative to the Gaussian noise model.

SUMMARY

Two non-Gaussian noise models that may be made to have the same univariate statistics and the
same covariance function are presented. The general optimal detection structure for each of the noise
models with a completely known signal is given; the two detection structures are shown to differ in

13
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fundamental ways. This difference indicates that a noise model based on univariate statistics and a
covariance function is not sufficient to formulate the solution of the signal detection problem in non-
Gaussian noise. A radar example of significant practical interest is presented to support this general
conclusion.
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Appendix A

DECOMPOSITION OF WEIBULL RANDOM VARIABLE FOR SELECTED
VALUES OF THE SKEWNESS PARAMETER

The Weibull pdf is given by

h(co) = b ab-le -bc' > o,

where

a is the skewness parameter

b is the scale parameter.

We wish to show that for the values of the skewness parameter, a = 2, 1, and 1/2 , the Weibull ran-
dom variable X has the decomposition

co = aR (A-2)

where

R is the Rayleigh random variable with unit parameter

a is the random variable independent of R.

If we let a = 2, we have

h();a = 2) = 2bcoe b-,

which is a Rayleigh pdf with parameter 1/2b. Clearly, then, when a = 2, the random variable W
trivially satisfies the decomposition given by Eq. (A-2), i.e.,

co = -, R.
2b

For this value of the skewness parameter, the pdf of a2 is

P (W) = |- '
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where

6( ) is the Dirac delta function,

and the Weibull pdf may be written as

h(w;a = 2) = H - 2b

If we let a = 1, we have for the Weibull pdf

h(w;a = 1) = be b-,

which is an exponential pdf. The exponential distribution is
whose pdf is given by

2v
-(a

f(c))= r7

a special case of the K distribution,

24 KV- r2> (A-8)

where

F( ) is the -y function,

Kv - If ) is the modified Bessel function of the second kind of order v - 1

v, -q are the parameters of the distribution.

Since

K1/2(z) = -e ,
2z

K _,(z) = K,(z),

and

F(1/2) = A,

then, if we let v = 1/2, we have

f( = GO _=

W , /
e -

2a,<
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(A-9)

W2-

- coe 20, 6
� 0 Or2



NRL REPORT 9177

= \/'e n. (A-10)

which, if we set 1 /n = b, is equivalent to our Weibull pdf with a = 1. The K pdf has the known
functional decomposition

2

f(a,) = so- e 2'p(a2)d(a2), (A-Il)

where

P(a2) = r( .(02)v-1e 7 (A-12)

Thus, with v = 1/2 and 7 = l/b2 , we have

00 v, b 

h(a;a = 1) = -i e0 2 da2 (A-13)

which corresponds to Eq. (A-2).

Finally to examine the case a = 1/2, we consider that any Weibull random variable may be
shown to have the representation

a, = (X)l/a (A-14)

where x is a random variable with pdf

p(x) = bebx x 0 (A-15)

i.e., exponential. We have shown that the exponential random variable has the representation

x = N/yR, (A-16)

where -y is a random variable with pdf

b2

( Y) _b e 2 (A-17)
'\2ir-Y

Substituting of Eq. (A-16) into Eq. (A-14) shows that any Weibull random variable has the represen-
tation

a, = (N/yR)I"a (A-18)

Let t = Rl1a and examine the pdf of t. This pdf is easily shown to be
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g W) = 2a t2a -I t~/2 (-19)2 e(

which shows that t is a Weibull random variable with skewness parameter 2a and scale parameter
1/2. But we have already shown in Eq. (A-18) that t may be represented as

t = ('vOR )I/2a (A-20)

where the pdf of d is

p() = e 8/8 (A-21)

(i.e., in Eq. (A-18), let o - t, a - 2a, -y- 3 and in Eq. (A-17) let b - 1/2 ). Back substitution
in Eq. (A-18) shows that a general Weibull random variable of skewness a and scale b may be
represented as

a,) - (x4 I1/a(xR )I /2a (A-22)

At this point we could continue this process further, since we again have a random variable of the
form RP, where p is a constant, and we have shown that this random variable is a Weibull random
variable. For our interest, though, we may stop with Eq. (A-22) and examine it when a = 1/2, i.e.,

a, = -yjrR, (A-23)

which is the decomposition we are seeking to show. For a = 1/2, we therefore have

h(w;a = 1/2) = so i 2 /2 &ep(a2)d(2), (A-24)

where

a2 = -y2o. (A-25)

A straightforward application of the laws of transformation of random variables with Eqs. (A-17) and
(A-21) yields

b 001 u2 b 2.yd.(-
4w as =10 , i/exp 8 2 2 (A-26)

Further evaluation of this integral does not appear to be tractable.
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Appendix B

MULTIVARIATE PDF FOR SPHERICALLY
INVARIANT NOISE

Although more than one approach is available to derive the desired pdf, a very straightforward
approach is as follows.

The multivariate pdf is given by

1 1 (
fx (X) = (27r)m IA I 0 (or,2)m

exp |- 1 xtA-lx p (ax2)d (ax 2),

where p (ax2) satisfies

h(lxi |) = o 2 exp
0 ax

12

2ax2
p (ax 2 )d(ax2 ), (B-2)

and h (I xi I ) is known. Define z = 1/ax2 . Substitution in Eqs. (B-i) and (B-2) yields

fx) W (2ir)m A zm exp - xtAx( f (z)dz. (B-3)

h(Ixi I) = I 0 l xi I exp

Now define

With this definition, Eq. (B-4) becomes

h(Ixi 1)

I xi 

I- 2 ZJ zf (z)dz.

q(z) = zf(z).

I 0 q (z) exp
-I i 12}

(B-4)

(B-5)

(B-6)

If we let s = I xi 1 /2 and Q (s) be the one-sided Laplace Transform of q (z) , we then have

Q (S ) = h-2 ), (B-7)
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and

q(z) 1 +jQ(s)eds, (B-8)
27rj Sc -J00o(B8

where c is greater than the real part of any singularities of Q.

We now use the result in Eqs. (B-5) and (B-8) in Eq. (B-3) to obtain

X(X) 1 1 c +j| h( (X is) 0 -ml exp J- XA-lx z+zs dzds. (B-9)
27.rj (27r)m IAl Cj0 __Ij72 .1 L 011 zm~za.(B

Since x'A-lx is positive definite, if we assume m > 1 (a trivial assumption) the integral over z con-
verges, and we have

fX W (-1)m (m - 1)! c+j 0 h( 2) 1 ds. (B-1)
fx) 27r] (27r)m I A| c <I [s -- 1Ix'A-xj

If we now assume that s = a + ja, and

lim h (,r_s 0O

and that h (2s )/ 2-s is analytic in the right-half plane, then by complex analysis we have

fx~x - (I)Mi dm-1 [h (2s) (B- Il)
(27r)m lAI dsm l 2s s }=x'A-'x

If m = 2 and h () is the Weibull pdf, the various assumptions that were made hold, and we get Eq.
(24) of the main body of the report. Less straightforward approaches that do not use complex
analysis yield the same result.
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